A demonstration of reproducible workflows with nonprofit data for the ARNOVA Conference 2024.
Packages used in the demo script:
# install.packages( "devtools" )
devtools::install_github( "Nonprofit-Open-Data-Collective/peopleparser" )
devtools::install_github( 'nonprofit-open-data-collective/titleclassifier' )
devtools::install_github( 'nonprofit-open-data-collective/fiscal')
devtools::install_github( 'nonprofit-open-data-collective/irs990efile')
If you are having problems downloading packages try:
# options( download.file.method = "wininet" ) # for windows
# options( download.file.method = "libcurl" ) # for all op systems
Some Useful Nonprofit Packages • Nonprofit Open Data Collective on GitHub
We also use the following R packages in the demo script:
package.list <-
c( "tidyverse",
"knitr", "pander",
"ggrepel", "RecordLinkage",
"data.table", "reshape2",
"utils" )
install.packages( package.list )
# REPRODUCIBLE WORKFLOWS
library( dplyr )
library( data.table )
nodc <- "https://raw.githubusercontent.com/Nonprofit-Open-Data-Collective/"
repo <- "arnova-2024/refs/heads/main/"
file <- "functions.R"
source( paste0( nodc, repo, file ) )
hd.2016 <- get_table( "F9-P00-T00-HEADER", year=2016 )
p1.2016 <- get_table( "F9-P01-T00-SUMMARY", year=2016 )
bmf <- get_bmf()
df <- merge( hd.2016, p1.2016, by="URL", all=TRUE )
df <- merge( df, bmf, by="EIN2", all.x=TRUE )
The Nonprofit Sector in Brief Dashboard aggregates more than three decades of NCCS data to illuminate trends in the nonprofit sector. The dashboard currently provides data up to 2021 and will be continuously updated with the most recent available data. View data and trends by organization type, subsector, asset size, geography, and time period to see a snapshot of the nonprofit sector as seen through IRS data.